The ernst equation on a riemann surface
نویسندگان
چکیده
منابع مشابه
Physically Realistic Solutions to the Ernst Equation on Hyperelliptic Riemann Surfaces
A class of solutions to the Ernst equation (the stationary axisymmetric Einstein equations in vacuum) is discussed which is constructed via Riemann–Hilbert techniques on hyperelliptic Riemann surfaces. We identify a physically interesting subclass where the Ernst potential is everywhere regular except at a closed surface which might be identified with the surface of a body of revolution. The co...
متن کاملar X iv : g r - qc / 9 40 50 32 v 1 1 3 M ay 1 99 4 The Ernst equation on a Riemann surface
The Ernst equation is formulated on an arbitrary Riemann surface. Analytically, the problem reduces to finding solutions of the ordinary Ernst equation which are periodic along the symmetry axis. The family of (punctured) Riemann surfaces admitting a non-trivial Ernst field constitutes a " partially discretized " subspace of the usual moduli space. The method allows us to construct new exact so...
متن کاملOn Klein's Riemann Surface
In autumn 1993, in front of the MSRI in Berkeley, a marble sculpture by Helaman Ferguson called The Eightfold Way was revealed. This sculpture shows a compact Riemann surface of genus 3 with tetrahedral symmetry and with a tessellation by 24 distorted heptagons. The base of the sculpture is a disc which is tessellated by hyperbolic 120◦-heptagons thus suggesting that one should imagine that the...
متن کاملSome Properties of a New Solution of the Ernst Equation
From a particularly simple solution of the Ernst equation, we build a solution of the vacuum stationary axisymmetric Einstein equations depending on three parameters. The parameters are associated to the total mass of the source and its angular momentum. The third parameter produces a topological deformation of the ergosphere making it a two-sheet surface, and for some of its values forbids the...
متن کاملCounting Ovals on a Symmetric Riemann Surface
Let S be a compact Riemann surface without boundary. A symmetry of S is an anti-conformal, involutary automorphism. The xed point set of is a disjoint union of circles, each of which is called an oval of . A method is presented for counting the ovals of a symmetry when S admits a large group G of automorphisms, normalized by . The method involves only calculations in G, based on the geometric d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 1994
ISSN: 0550-3213
DOI: 10.1016/s0550-3213(94)80048-0